자세히 보기

By CIOKR Staff

“AI 활용 준비된 기업은 10곳 중 4곳”··· HPE ‘AI 이점 설계’ 보고서 발표

HPE가 한국을 포함해 전 세계 14개국 기업들의 AI 여정 현황을 짚어보는 설문조사 결과를 담은 ‘AI 이점 설계(Architect an AI Advantage)’ 보고서를 20일 발표했다.

해당 조사 결과에 따르면, 설문조사에 참여한 전 세계 기업 내 IT 리더 중 절반에 못 미치는 44%만이 ‘자신의 기업이 인공지능(AI)의 이점을 실현할 준비가 됐다’고 응답했다. HPE는 “이는 실제 AI 도입 과정과 지표가 유기적으로 연결되어 있지 않는 등 AI 전략 내 중대한 격차가 존재함을 보여주며, 결과적으로 파편적인 접근방식을 취하게 되어 실제 AI 도입 시 문제가 악화될 수 있음을 시사한다”라고 설명했다.

이번 설문조사는 전 세계 14개국 2,000명 이상의 IT 리더를 대상으로 진행되었으며, 보고서에 따르면 전 세계적으로 AI에 대한 투자가 증가하고 있지만 기업들은 낮은 데이터 성숙도, 네트워킹 및 컴퓨팅 프로비저닝의 결함 가능성, 주요 윤리 원칙 및 컴플라이언스 고려 사항 등 성공적인 AI 도입 결과에 영향을 미치는 핵심 영역을 간과하고 있는 것으로 나타났다. 또한 향후 투자수익률(ROI)에 부정적인 영향을 미칠 수 있는 전략과 이해도 간의 격차도 발견했다.

HPE 아루바 네트워크 부사장 실비아 훅스는 “AI가 빠르게 도입이 되고 있으며, 거의 모든 IT 리더들이 향후 12개월 동안 AI에 대한 투자를 늘릴 계획이다. 이번 조사 결과는 AI에 대한 높은 수요를 보여주면서도, 보다 포괄적인 접근 방식을 따르지 않으면 발전이 정체될 수 있는 점도 강조한다. 예를 들어, 사내 전략과 부서의 참여 방식이 일치하지 않는 경우, 기업은 중요한 전문 지식을 활용하고 효과적이고 효율적인 결정을 내리며 AI 로드맵이 비즈니스 전반에 일관되게 유익한 결과를 도출하는 데 어려움을 겪을 수 있다”고 말했다.

이번 조사에 따르면 기업이 데이터 관리를 성공적인 AI 활용을 위한 가장 중요한 요소 중 하나로 인식하고 있음에도 불구하고, 데이터 성숙도는 여전히 낮은 수준에 머물러 있는 것으로 나타났다. 단 7%의 조직만이 실시간 데이터 푸시/풀(data push/pull)을 실행해 혁신을 일으켜 외부 데이터를 수익화 할 수 있으며, 26%만이 데이터 거버넌스 모델을 수립해 고급 분석을 실행할 수 있는 것으로 나타났다.

또한 응답자 10명 중 6명 미만이 ‘자신의 기업이 AI 모델을 위한 데이터 준비의 주요 단계인 액세스(59%), 저장(57%), 처리(55%), 복구(51%)를 모두 완벽하게 처리할 수 있다’고 답했다는 점이다. 이러한 결과는 AI 모델 생성 프로세스를 지연시킬 위험이 있을 뿐만 아니라, 모델이 부정확한 인사이트를 제공하고 부정적인 ROI를 초래할 가능성도 높다.

응답자들에게 엔드-투-엔드(end-to-end) AI 생애주기 전반에 필요한 컴퓨팅 및 네트워킹 수준에 대해 질문했을 때도 비슷한 격차가 나타났다. 조사 내 IT 리더의 93%는 사내 네트워크 인프라가 AI 트래픽을 지원하도록 설정되어 있다고 답했으며, 84%는 사내 시스템이 AI 생애주기 전반에서 필요한 특수 사항들을 지원할 수 있는 충분히 유연한 컴퓨팅 용량을 갖추고 있다고 답했다.

IT 리더의 1/4 이상(28%)이 기업의 전반적인 AI 접근 방식이 “파편화되어 있다”고 답하는 등, 기업들이 주요 비즈니스 영역을 유기적으로 연결하는 데 실패하고 있다. 이를 증명하듯, 1/3 이상(35%)의 기업이 각 기능에 대해 별도의 AI 전략을 수립하고 있으며, 32%는 아예 서로 다른 목표를 세우고 있다.

더욱 위험한 것은 소비자와 규제 기관 모두의 윤리 원칙 및 컴플라이언스 준수에 대한 관심이 높아지고 조사가 강화되고 있음에도 불구하고 해당 요소들이 완전히 간과되고 있다는 점이다. 조사에 따르면 IT 리더들은 법률 및 컴플라이언스(13%)와 윤리(11%)가 AI 성공에 가장 중요하지 않다고 생각하는 것으로 나타났다. 또한 기업 4곳 중 1곳(22%)은 비즈니스를 위한 AI 전략 논의에 법률팀을 전혀 참여시키지 않는 것으로 나타났다.
이번 보고서의 주요 내용은 다음과 같다.

  • 단 7%의 조직만이 실시간 데이터 푸시/풀(data push/pull)을 실행해 혁신을 일으켜 외부 데이터를 수익화 할 수 있으며, 26%만이 데이터 거버넌스 모델을 수립해 고급 분석을 실행할 수 있는 것으로 나타났다. 기업의 데이터 성숙도가 여전히 낮은 수준에 머물러 있음을 알 수 있다.
  • 응답자 10명 중 6명 미만이 ‘자신의 기업이 AI 모델을 위한 데이터 준비의 주요 단계인 액세스(59%), 저장(57%), 처리(55%), 복구(51%)를 모두 완벽하게 처리할 수 있다’고 답했다. 이는 AI 모델 생성 프로세스를 지연시킬 뿐만 아니라, 모델이 부정확한 인사이트를 제공하고 부정적인 ROI를 초래할 수 있음을 의미한다.
  • IT 리더의 1/4 이상(28%)이 기업의 전반적인 AI 접근 방식이 “파편화되어 있다”고 답했다. 1/3 이상(35%)의 기업이 각 기능에 대해 별도의 AI 전략을 수립하고 있으며, 32%는 아예 서로 다른 목표를 세우고 있는 것으로 나타났다. 기업이 주요 비즈니스 영역을 유기적으로 연결하는 데 실패하고 있음을 알 수 있다.
  • IT 리더는 법률 및 컴플라이언스(13%)와 윤리(11%)가 AI 성공에 가장 중요하지 않다고 생각하는 것으로 나타났다. 또한 기업 4곳 중 1곳(22%)은 비즈니스를 위한 AI 전략 논의에 법률팀을 전혀 참여시키지 않는 것으로 나타났다.

dl-ciokorea@foundryco.com